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ABSTRACT

This thesis presents a design and implementation of a

model of a multicluster loop interface. This Delay Insertion

Loop type of interface is based on the IMS T424 Transputer

and the Concurrent Sequential Prodesses type of programming

language OCCAM. The Loop-type of communications systems are

described and the Delay Insertion type of interface has been

selected as the most appropriate one for high performance

real-time applications. The OCCAM programming language,

hosted on the VAX 11/780 VMS system (VAX-Virtual Address

eXtension, VMS-Virtual Memory System), was used to program

the simulated version of the multicluster loop interface.

4



TABLE OF CONTENTS

I. INTRODUCTION.......................

A. BACKGROUND....................11

B. MOTIVATION OF THIS THESIS...........12

C. OBJECTIVES....................14

D. THESIS ORGANIZATION...............14

II. HARDWARE......................15

A. TRANSPUTER....................15

B. WHY TRANSPUTER ?..............................15

C. GENERAL FEATURES OF TRANSPUTER. .. ....... 16

1. Memory....................16

2. Processor.................17

3. Links...................22

4. Peripheral Interface............23

III. SOFTWARE................... .... 25

A. OCCAM......................25

B. WHY OCCAM .................... 25

C. GENERAL FEATURES OF OCCAM...........26

1. Processes.................26

*2. Constructs.................29

3. Declaration Types..............38

4. Named Processes...............39

5. Expressions................39

6. Configuration...............40

IV. MULTIPROCESSOR-MULTITRANSPUTER SYSTEM........43

A. MULTITRANSPUTER CONCEPT............45

B. MULTIPROCESSOR INTERCONNECT STRUCTURES . . .. 48

C. LOOP COMMUNICATION SYSTEM...........51



D. TYPES OF LOOPS.................54

1.. Newhall Type Loop..............54

2. Pierce Type Loop...............54

3. Delay Insertion Type Loop..........55

E. LOOP ANALYSIS............. . .. .. .. .. ...........

1. Why Loop ?................................................

2. Performance of Loop............56

3. Reliability of Loop. ............ 57

F. SYSTEM CONFIGURATIONS WITH THE TRANSPUTER .58

1. Matrix Structure...............58

2. Tetragonal 3-D Structure..........59

3. Loop/Ring Structure............59

4. Butterfly Structure............60

5. The Other Structures ............ 61

V. DELAY INSERTION TYPE LOOP COMMUNICATION SYSTEM .. 64

A. INTRODUCTION..................64

B. LOOP ORGANIZATION AND OPERATION ........ 65

C. IMPLEMENTATION OF DELAY INSERTION LOOP . . . . 69

1. States of Delay Insertion Loop ........ 69

2. Four Transputer Loop System ........ 71

3. OCCAM Implementation of the System . . .. 74

VI. CONCLUSIONS....................80

A. SUMMARY....................80

B. RESULTS AND COMMENTS...............80

C. SUGGESTIONS FOR FOLLOW-ON WORK. ........ 82

APPENDIX A: DELAY INSERTION LOOP INTERFACE. ....... 85

LIST OF REFERENCES....................88

INITIAL DISTrRIBUTION LIST.................89

6



LIST OF TABLES

1. CAPABILITIES OF THE IMS T424 ... ........... 13

2. INSTRUCTION EXECUTION TIMES OF IMS T424 ........ .. 18

3. SPEED OF IMS T424 ....... ................. 23

4. PRIMITIVE PROCESSES OF OCCAM .... ........... 27

5. SEQUENTIAL CONSTRUCT ..... ............... 30

6. PARALLEL CONSTRUCT ...... ................ 31

7: CONDITIONAL CONSTRUCT ..... ............... .33

8. ALTERNATIVE CONSTRUCT ..... ............... .34

9. REPETITIVE CONSTRUCT ...... ............... 36

10. REPLICATOR CONSTRUCT ..... ............... 37

Ii. DECLARATION TYPES ....... ................. 38

12. A NAMED PROCESS ....... .................. 39

13. MULTIPROCESSOR SYSTEMS ADVANTAGES&DISADVANTAGES 45

14. CODE AND ITS DIGITS .. ........... ..... .. 76

7



LIST OF FIGURES

2.1 Memory Interface Driving Static RAM's ........ .17

3.1 Flow Diagram of the Sequential Construct . ..... .. 29

3.2 Flow Diagram of the Parallel .Construct . ...... .. 31

3.3 Flow Diagram of the Conditional Construct ...... .. 33

3.4 Flow Diagram of the Alternative Construct ...... .. 34

3.5 Flow Diagram of the Repetitive Construct . ..... .. 36

3.6 Flow Diagram of the Replicator Construct . ..... .. 37

4.1 Throughputs of the Developing Technology . ..... .. 46

4.2 Loop Configuration ...... ................ 52

4.3 Matrix Structure ...... ................. 59

4.4 Tetragonal 3-D Structure ..... ............. 60

4.5 Loop/Ring Structure ...... ................ 60

4.6 Butterfly Structure ...... ................ 61

4.7 A Random Network . ........... .. ......... 62

4.8 A Toroidal Array ...... ................. 62

4.9 A Complete Loop Regular Array . ..... . ....... 63

4.10 A Bigger System Built from Four Big Ones . ." . . . 63

5.1 Basic Function of Delay Insertion Loop . ...... .. 65

5.2 Practical Delay Insertion Loop .... .......... 67

5.3 Delay Insertion Loop and its Operation . ...... .. 67

5.4 States of the Delay Insertion Loop ... ........ 70

5.5 Four Transputer Single-Unidirectional Loop .... 71

5.6 Simultaneous Transmission of Four Transputers . 73

5.7 Implementation of Delay Insertion Loop . ...... .. 74

6.1 Two-Loop System with Four Transputers ........ .83

6.2 16 Transputer Regular Array Complete Loop ...... .. 83

6.3 Suggested Loop Interface ..... ............. 84

8



ACKNOWLEDGEMENT

I would like to acknowledge and thank my thesis advisor

Prof. Uno R. Kodres for his encouragement and guidance in

this thesis. His advice and suggestions often provided the

needed incentive required to overcome difficult obstacles.

I would like to thank my friend Lt.J.G. Zafer Selcuk and

the staff of the Computer Science Department for their help

and understanding.

A special note of appreciation goes to my wife, Mine,

because of her invaluable patience, encouragement and under-

standing during this intensive educational period at the

Naval Postgraduate School, and whose assistance was a really

significant contribution to this thesis. Also special appre-

ciations go to my parents and my family. I would like to

devote this thesis to all of them.

od

91

9!

I!



DISCLAIMER

Many terms used in this thesis are registered trademarks

of commercial products. Rather than attempt to cite each

individual occurrence of a trademark, all registered trade-

marks appearing in this thesis* will be listed below

'following the firm holding the trademark.

INMOS Limited Corporation, Colorado Springs, Colorado

INMOS

OCCAM

Transputer

IMS T424

Inmos links

IMS 1400 (RAM)

IMS 3630 (RAM)

IMS 2620 (EPROM)

Just for conceptual explanation purposes, some parts of

the Chapter IV and V are reproduced by the following

permission.

Cay Weitzman, DISTRIBUTED MICRO/MINICOMPUTER SYSTEMS:

Structure, Implementation and Application, Copyright 1980,

pp. 62-71, 253-255. Reproduced by permission of

Prentice-Hall, Inc., Englewood Cliffs, N.J.

10



L

I. INTRODUCTION

A. BACKGROUND

As the computer technology grows rapidly, the complexity

of computer systems together with hardware and software has

been increasing. The lowest possible cost, smallest incre-

mental expansion capability and the demand for enhanced user

convenience have influenced the trend toward multiprocessor

systems.

To enhance throughput, reliability, computing power,

parallelism, and economies of scale, additional processors

can be added to some systems. In early multiprocessor

systems the additional processors had specialized functions,

e.g., I/0 peripherals. Later multiprocessing systems evolved

to include the concept of one large CPU and several periph-

eral processors. These processors may perform quite

sophisticated tasks, such as running a display. A more

common type of multiprocessing is a system having two or

more processors, each of equal power. [Ref. 1]

There is also the computer network, in which many

different computers are connected to perform repetitive

functions, often at great distances from one another. They

typically perform functions by spreading the pieces of the

function around the total system.

There are various ways to conr-ct and operate a multi-

processor system, loop architecture being one of them. The

primary advantage of loop systems are their relatively low

cost and high modularity. Different loop types will be

introduced and especially the Delay Insertion Loop will be

emphasized. 7
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III. SOFTWARE

A. OCCAM

As a new programming language, OCCAM, is designed in

conjunction with the INMOS transputer [Ref. 8]. It supports

concurrent applications in which many parts of a system

operate separately and interact. OCCAM can capture the hier-

archical structure of a system by allowing an interconnected

set of processes to be regarded from the outside as a single

process. At any level of detail, the programmer is only

concerned with a small and manageable set of processes.

B' WHY OCCAM ?

The novelty of OCCAM is in its treatment of concurrency.

OCCAM enables the behaviour of concurrent systems to be

explicitly programmed and controlled. It also gives the

efficiency, in terms of program density and performance, of

an assembler, while offering the productivity and reli-

ability advantages of programming in a high level language.

OCCAM enables the programmer to express a program in

terms of concurrent processes which communicate by sending

messages through communication channels. This has two impor-

tant consequences. First, it gives the program a clear and a

simple structure as the individual processes operate largely

independently. Second, it allows the program to exploit the

performance of many computing components, as each concurrent

process may be executed by an individual processor.

OCCAM provides a methodology for designing present and

future concurrent systems using transputers in just the same

way that Boolean Algebra provides a methodology for

designing today's electronic systems from logic gates.

25
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The "Event" input may be used to communicate with

waiting processes and hence cause it to be scheduled. This

provides an input functionally similar to an interrrupt, in

a manner consistent with the process model of the

transputer. The typical latency for this interrrupt is 600

ns. The "Event" input can also be used to enable the periph-

eral interface to respond to being accessed from a standard

microprocessor bus.

The interface is accessed via four standard input

and output channels. AlL eight channels use the same 8 bit

path and transfer handshake, with the processor initiating

the transfer. The transfers are synchronized to a separate

external clock, which need not have any fixed relationship

with the transputer input clock. Asynchronous operation is

also permitted, but at a lower speed than for synchronous

operation.

Externally addressable devices may be connected via

the peripheral interface. For instance, by using one output

channel as the address channel, another as the write data

channel, and one input channel as the read data channel.

Both addresses and data may be arbitrarily long sequences of

bytes. The 4 Mbytes/s data rate provided by the interface

allows the connection of high performance peripheral chips,

without the need for'FIFO's or DMA controllers.

24
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TABLE 3

SPEED OF IMS T424

TYPE INSTRUCTION PROCESSOR PROCESSOR INPUT
THROUGHPUT CLOCK SPEED CYCLE TIME CLOCK

IMS T424-10 5 MIPS 10 MHz 100 ns 5 MHz
IMS T424-12 6 MIPS 12.5 MHz 80 ns 5 MHz
IMS T424-15 7.5 MIPS 15 MHz 67 ns 5 MHz
IMS T424-17 9 MIPS 17.5 MHz 57 ns 5 MHz
IMS T424-20 10 MIPS 20 MHz 50 ns 5 MHz

input clock). All transputers, of whatever word length and

speed selection, support the universal communications

frequency as a product range standard. An internal link

clock is derived from the input clock and data bits are

transmitted synchronously with this clock. Data reception is

asynchronous.

As shown on Table 3, the maximum speed of the IMS

T424 transputer is 20 MHz providing 10 MIPS of throughput.

The data rate on each link can be programmed, using link set

configuration channel [Ref. 4]. 20 Mbits/s gives a maximum

data rate of 1.8 MBytes/s on a channel.

4. Peripheral Interface

The peripheral interface is an 8 bit bidirectional

bus which may be used to input and output sequences of

bytes. It provides access to industry standard devices such

as eight bit parallel controllers for auxiliary memory. A

block message transfer capability between memory and the

peripheral interface is provided by the interface

controller. There are two control lines which may be used to

address external devices, and an "Event" input to provide an

interrupt capability.

23



3. Links

The IMS T424 transputer has four standard INMOS

serial links which provide high speed intercommunication

between transputer products and enable a rich variety of

networks to be constructed. The link interfaces and the

processor all operate concurrently and each link interface

operating independently provides block message transfers to

and from the memory of the transputer.

Each autonomous link interface has an output and an

input signal, both of which are used to carry data and

protocol bits. A message is transmitted as a sequence of

bytes. After transmitting a data byte, the sending

transputer waits until an acknowledge has been received,

signifying that the receiving transputer is ready to receive

another byte, before transmitting the next byte. Each link

implements two OCCAM channels. The protocol allows the

receiving transputer to transmit an acknowledge as soon as

it starts to receive a data byte and provides end-to-end

channel synchronization. This asynchronous protocol guaran-

tees reliable transmission in spite of possible delays in

either the sending or receiving transputer. A message trans-

mission via a link to or from a process executing on the

T424 is performed by an autonomous block transfer engine.

The process itself is descheduled during the transfer,

allowing the transputer processor to execute other

processes. During transmission of a message, both sending

and receiving processes will be set inactive, and they will

only be linked to the end of their respective active queues

after the final byte has been acknowledged.

Table 3 shows different speeds of the IMS T424

transputer.

The links support a universal standard bit rate of

twice the input clock frequency (10 Mbit/s with a 5 MHz

22



Mbits/s in both directions at the same time, using internal

memory, the maximum interference on processor performance is

about 8 %. The average interference is negligible.

The overall size of a program is given by the sum of

the sizes of its program elements. All timing averages and

the maximum program execution time are given by the sum of

the execution times of the individual program elements. If

the program is held in the exterrial memory, the external

program fetch time must be added to obtain the program

execution time. If data is held in external memory, the
external data access time must also be added to obtain the

program execution time. The processor shares memory cycles

with its input/output interfaces. Each concurrent access by

an interface channel delays the processor by an average of

30 ns. The maximum reduction in performance is 10 %; under

typical conditions the reduction is negligible.

For integer computations, the IMS T424 transputer is

nearer a dedicated digital signal processing device than a

mainstream 32 bit microprocessor. However, in common with

other designs, it does not provide built-in floating point

operations. The design of its instruction set, including

appropriate shifting operations, enables an efficient soft-

ware implementation of IEEE floating point specification,

comparable in speed with an established floating point

coprocessor. A software library implementing both 32 and 64

bit floating point will be available from INMOS during 1985,
and is likely to satisfy many applications needs. Using
appropriate sequences of instructions, the T424 can perform

arbitrary length integer arithmetic, real arithmetic, frac-

tional arithmetic and fixed point arithmetic. An obvious

possibility for a new transputer product is one with

embedded floating point capability. [Ref. 7]

-21
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The processor also supports the OCCAM concept of
alternative inputs, which allows hardware and software..'
interrupts to be programmed in a high-level language.

The processor includes a timer: a process can read

the time or can wait until the time reaches a value.

The processor sees memory as a linear signed address

space of 4 Gbytes (2'2 bytes), with no difference between

on-chip and off-chip memory exceft for performance. The

signed address space allows address calculations to be

handled in the same way as arithmetic calculations. This

not only simplifies the processor (and compiler) design but

also means that arithmetic overflow can be treated

uniformly.

The processor bootstraps itself either from program

in external ROM or from any of the INMOS serial links. Any

error detected by the processor can drive an error signal

which can be used to stop the processor so that the error is

contained and the cause of the error can be analysed.

As an external memory cycle can be used either to

access one data word or to fetch four instructions, most

programs require more memory accesses for data than for the

program. In general, therefore, better results are obtained
by placing program off chip rather than placing data off

chip. If both the pr6gram and local variables can be held on

chip, so that most memory accesses are to on-chip RAM, the
performance will be close to the performance of all program

and data on chip.

A high priority process running in the transputer

takes priority over all low priority activity, including
communication. Communication to a high priority process

occurs concurrently with another high priority process

running in the transputer. For a 50 ns cycle time T424

processor (Table 3), if all processes are running at the

same priority, and all the links are transferring at 10

20



The processor provides direct support for the OCCAM

model of concurrency and communication. It has a scheduler

which enables any number of concurrent processes to be

executed together, sharing the processor time. Process

communication is implemented by memory-to-memory block move

operations. These fully utilize the bandwidth available from

the on-chip RAM. The small number of registers which form

the process context and the use df on-chip RAM combine to

provide a fast process switch time.

In concurrent processing, the uniprocessor executes

programs sequentially. It implements parallel processes by

sharing its time between the set of processes which are

active at any instant. A process is active when it is not

waiting for input or output. When communication happens, the

currently executing process is set inactive to wait for

communication and the next process on the active queue

starts to execute. When a communication channel becomes

ready, the message is passed and the waiting process is

linked to the end of the active process queue. The process

continues to execute, whenever its turn in the-queue comes

up.

The T424 processor supports two levels of prioriy-.

High priority processes can be used for message through-

routing or for fast' response to external events. PRIPAR

(priority parallel) process may have two components. A queue

of active processes is maintained for each priority level. A

priority 1 (low priority) process is executed whenever there

are no active priority 0 (high priority) processes. If there

are no active priority 0 processes, the latency (time from

an external channel becoming ready to the start of its first

instruction of the relevant waiting priority 0 process) is

typically 600 ns (maximum 2600 ns). Otherwise, if a priority

0 process is already executing, the relevant waiting process

is linked to the end of the priority 0 queue.

19
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TABLE 2

INSTRUCTION EXECUTION TIMES OF IMS T424

I N S T R U C T I 0 N EXECUTION TIME\" (nano second)
arithmetic operands

+ - 50
multiplication 950
division .................... 1950
remainder.......1950

comparison operators
., ,>,-,<, 100

logical'operators
AND , OR ......... ..... .. 50

shifting
<[n], >>[n] .. .......... . 50n+50

identifiers
variable 120
vector variable . 160

expression evaluation
constant ............ 70
parenthesis .. ........... .50

constructor
sequential .................. 0
parallel ... ............. 450n-200
alternative 6n...........60n+600
branch (IF) 150........... i15n
repetitive (WHILE) ........ .. 200primitives.
rm vgutput) ? (input) ....... .. 625
assignment ..... .. ............ 0

High-level language expressions are evaluated on an

evaluation stack of 32-bit registers. The instructions

specify the registers of the evaluation stack implicitly,
allowing compact coding of instructions. The correct and

optimal sequence of these instructions is easy for a

compiler to generate. Each instruction is one byte long and

divided into two four bit fields: function and operand. It
is also simple to decode, which contributes to the high

performance of the processor. High-level language support is

enhanced with instructions for array bounds checking, arith-
metic overflow detection and support for multi-word-length

arithmetic.

18



U

Ile

S

Figure 2.1 Memory Interface Driving Static RAM's

user can choose the interval between refresh cycles. An

asynchronous wait input is provided so that the memory

timing can also be determined externally if required. Wait

states generated by the configurable strobes can extend the

interface cycle for slow external devices. Wait states

generated by external logic can extend the memory cycle

indefinitely. The cycle to access memory is completed in 150

nano seconds providing data rate of 25 Mbytes/second

maximum, without requiring the phases for address

multiplexing.

2. Processor

The T4Z4 32 bit processor is designed to implement

high-level languages (e.g. OCCAM, C and Pascal) efficiently
and to provide high performance communication between

concurrent processes. Its instruction execution rate is 10

MIPS. Typical instructions execution times are shown in

Table 2

17
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-* -. The transputer can be used as a single chip stand-alone

component or in networks to build high performance concur-
1 0rent systems. As a stand-alone component, the transputer can

-" be programmed in conventional high level languages. It is

v. designed to implement a particular concurrent programming

language, OCCAM, efficiently.

The transputer allows arbitrarily large systems to be

constructed using localized processing and communication.

- ~Its locality is exploited by OCCAM and multitransputer

systems can be used effect.ively.

The transputer uses point-to-point serial communication

links, therefore it provides maximum communication speed

with minimal wiring. Correspondingly, OCCAM uses point-to-

point channels.

C. GENERAL FEATURES OF TRANSPUTER

The main components of the transputer memory,

processor, links and peripheral interface will be described

in the following subsections. [Ref. 3]

1. Memory

T424 contains 4 Kbytes of static RAM which cycles

synchronously with the processor and provides maximum data

-4 transfer rate of 80 Mbytes/sec, Figure 2.1 The memory

.4 interface uses a 32 bit multiplexed data and address bus to
give high performance access to external memory. It can

extend internal address capability to a total of 4 Gbytes in

a single linear address space.

A number of preset timing configurations is provided

to suit a wide variety of memories. All the timing strobes

are generated for dynamic RAM's as well as the necessary

refresh cycles. A memory cycle consists of six phases. Each

refresh cycle outputs a nine-bit refresh address and the

16
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II. HARDWARE

A. TRANSPUTER

The transputer is a programmable component. The term

"Transputer" is derived from 'transistor' and 'computer',

since the transputer is both a computer on a chip and a

silicon component like a transistor. As a transistor
computer, it is a single chip computer which provides a

direct implementation for the process model of computing, in

which each process is an independent computation with its

own data and program. The processes are executed in a time

shared mode on the transputer and special instructions are

provided to support the process model of communication. A

transputer is a microcomputer with its own local memory and

with link interfaces for connecting one transputer to

another transputer [Ref. 3].

B. WHY TRANSPUTER ?

There are some problems in the design of concurrent

systems. Three apparent ones are

1. Hardware problems (How to connect the computers).

2. Programming problems (How to program tens or hundreds

of connected machines). I
3. Design problems (How to design the system as a whole).

[Ref. 6]
IMS T424 32 bit transputer provides an effective solu-

tion to these problems. The programming problem may be

solved by the use of an appropriate concurrent programming

language; OCCAM is recommended.

'p.
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C. OBJECTIVES

This thesis implements a model of a Delay Insertion Loop

type of serial communication interface for a real-time

multitransputer system by using the programming language

OCCAM. A four transputer model will be used to illustrate

the interface programming. Although the model uses only

four transputers, any number of transputers may be connected

together using this type of loop concept. Fault tolerance

issues and how these issues can be resolved are discussed

separately.

D. THESIS ORGANIZATION

The introduction just presented is designed to provide

the reader with a brief look at a multitransputer architec-

tural concept, the transputer and OCCAM language.

Chapter II will present the hardware architecture and

the capabilities of the transputer and multitransputer

systems. Chapter III will present the OCCAM as a new concur-

rent processing language and its special features. Chapter

IV will describe multitransputer systems, multiprocessing,

interconnect structures and loop type communication systems.

Chapter V will implement a four transputer model of a Delay

Insertion Loop Type of serial communication interface.

And the final chapter will present conclusions, observa-

tions that resulted from this thesis effort and suggestions

for further research. The software program of the system is

provided as an appendix.
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TABLE 1

CAPABILITIES OF THE IMS T424

processor ......... . 32 bits

processing spepd 10 MIPS (950 nanosecond mult.)

memory capacity .... 32 bit address bus

built in memory .... 4 KBytes RAM

serial bus . ...... .. 4 INMOS links (1.5 Mbytes/sec)

parallel bus ...... 25 Mbytes/sec (max. transfer)

peripheral interface 8 bits bidir. (4 Mbytes/sec)

power dissipation 0.9 Watts

physical . ....... . 45 mm2 chip mounted in an 84
contact leadless chip carrier.

Table 1 shows attractive parameter values of the

transputer as a uniprocessor component to use in a multiprQ-

cessing environment. The transputer provides excellent

hardware for implementing concurrent processing. It is

designed using a reduced instruction set architecture which

implements the OCCAM concurrent programming language

efficiently. [Ref. 5]

Another important feature of the transputer is the four

bidirectional serial communication channels. It is possible

to obtain multiple communication paths between two elements

of the multitransputer system by appropriately connecting

the serial links. These multiple paths provide for the

graceful degradation for redundant multitransputer systems.

The failed element can be simply by-passed in the multi-

system and processing continues with other elements of the

system.

13
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The bit-serial interconnect scheme is attractive since

it allows the user to interconnect processors made by the

different manufacturers and often with different internal

architectures without too much concern for the communica-

tions impact on the existing system software. [Ref. 2]

The Transputer (transistor computer) is a new single

chip computer which is presented and used as a powerful

uniprocessor in concurrent multiprdcessor systems with a new

programming language OCCAM.

B. MOTIVATION OF THIS THESIS

The importance of communication in a multiprocessor

system increases as the number of the processors in the

system increases. The need for an effective communication

for building a cluster of the processors lead us to choose

loop type and especially the Delay Insertion Loop type of

serial communication interface, since it provides efficient

use of transmission facilities as well as signal transpar-

ency, expandability (growth flexibility), relatively low

cost and high modularity.

The Transputer is chosen as a powerful component

processor for building multiprocessor system, so the

transputer is designed to implement a particular programming

language, OCCAM, efficiently. OCCAM enables the behaviour of

concurrent systems to be explicitly programmed and

controlled. The OCCAM language retains the efficiency, in

terms of program density and performance, of an assembler,

while offering the productivity and reliability advantages

of programming in a high level language. [Ref. 3]

If we look at some quantitative information about the

performance and capacity of the transputer, IMS T424

[Ref. 4], it can be understood why we are motivated for this

work.

12

!J.-.. .....-. ,. . . . . .

. . . . . . .



The task of the system designer is eased because of the

architectural relationship between OCCAM and the transputer.

A program running in a transputer is formally equivalent to

an OCCAM process, so that a network of transputers can be

described directly as an OCCAM program. [Ref. 3]

C. GENERAL FEATURES OF OCCAM

1. Processes

A process starts,. performs a sequence of actions,

and then terminates. Each action may be an assignment, an

input, an output or SKIP (Table 4). An assignment changes

the value of a variable, an input receives a value from a

channel and an output sends a value to a channel. The

process SKIP has no effect. The process STOP starts but

never proceeds, its main use is to prevent an erronous

process from proceeding. At any time between start and

termination a process may be ready to communicate on one or

more of its channels. Each channel provides a one way

connection between two concurrent processes; -one of the

processes may only output (write) to the channel, and the

other may only input (read) from it.

A process may be ready and waiting to input from any

one of a number of channels. In this case, the input is read

from the first channel which is used for output by another

process. Communication is synchronous. The value to be

transmitted is copied from the output process to the input

process when both an input process and an output process are

ready to communicate on the same channel.

OCCAM may be used to program an individual

transputer. The transputer shares its time between the

concurrent processes, and the channels are implemented by

values transmitted in the main memory.

26
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An OCCAM program may be executed by a network of

transputers. Nevertheless, the same program may be executed

unchanged by a smaller network or even by a single

transputer. Each transputer with local storage executes a

process with local variables, and each connection between

two transputers implements a channel between two processes.

Three primitive processes, as mentioned above, are

input, output and assignment. OCCAM programs are built from

these three primitives given in Table 4. They can be

combined sequentially or concurrently to create more complex

processes, and so they form the building blocks for a

program.

TABLE 4

PRIMITIVE PROCESSES OF OCCAM

PRIMITIVES SYNTAX

ASSIGNMENT variable expression

INPUT channel ? variable

OUTPUT channel! variable

a. Assignment

An assignment is indicated by the symbol ':='

It transfers the value of its expression to the named vari-

able. The expression is evaluated and the variable is set to

the resulting value, then the assignment process terminates.

The variable may be a simple variable or an element of a

vector of variables selected using either byte or word

subscripts.
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An assignment 'y e' sets the value of the

variable y to the value of the expression e and then termi-

nates. For example, 'y := 0' sets y to zero, and 'y y +

1' increases the value of y by 1.

b. Input

An input process reads (receives) a value from

the channel into a variable. Thi . symbol denotes the

input process. This primitive reads a value from the speci-

fied channel. It provides, synchronization with a concurrent

process, which places a synchronizing signal on the same

channel. An input primitive sets the value of a variable to

a value read from a channel. The input primitive waits until

an output primitive using the same channel is executed in

parallel with the input.

0 An input 'c ? v' reads a value from the channel

c, and assigns it to the variable v and then terminates. An

input 'c ? ANY' reads a value from the channel c, and

discards the value.

A multiple input is equivalent to a-sequence of

separate input processes for each variable in turn, in left

to right order. Each input is separately synchronized with'

an output process being executed in parallel. Each variable

may be a simple vaiiable, or a word or byte subscripted

element of a vector of variables.

c. Output

An output process writes (sends) the value of

the expression to the channel. An output is indicated by the

symbol ''. An output waits until an input using the same

channel is executed. It then outputs the value of the

.. expression to the channel and terminates. A multiple output

is equivalent to a sequence of outputs, which writes the

value of each expression in turn, in left to right order.
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Each output is separately synchronized with an input process

executed in parallel.

An output 'c ! e' writes the value of the

expression e to the channel c. An output 'c ! ANY' writes an

arbitrary value to the channel c.

2. Constructs

A number of processes may be combined to form a
sequential, parallel, conditional, alternative, repetitive,

replicative construct. A construct is itself a process, and
may be used as a component of another construct. Each compo-

neht process of a construct is written two spaces further

from the left hand margin, to indicate that it is part of

the construct.

a. Sequential

It is necessary to do a number of steps one
after another in many applications. Figure 3.1 shows the

flow diagram of this sequential construct. The component

processes are 'executed one after another in thisstructure.

Figure 3.1 Flow Diagram of the Sequential Construct

A sequential process takes the form of the
keyword SEQ followed by the component processes, each on a
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new line, all at an extra level of indentation as shown in

Table 5.

TABLE 5

SEQUENTIAL CONSTRUCT

SEQ SEQ
process cl ? x
process 2 x x +i

c2 x
process n

The component processes, process 1, process 2,

... process n are executed one after another. Each component

process starts after the previous one terminates and the

construct terminates after the last component process termi-

nates. For example, a sample SEQ construct given in Table 5,

reads a value,' adds one to it, and then writes the result.

SEQ and its component processes can be regarded

as a single process.

b. Parallel.

If it is required many processes to be running

as a concurrent system, a parallel process can be

constructed as shown in Figure 3.2.

As seen in Table 6, the keyword PAR is followed

by a number of component processes, each starting on a new

line and indented. Then the effect is to execute all of the

component processes together, which is achieved by sharing

the processor time between the set of active processes.

The parallel construct terminates after all the
component processes are terminated. If there is no component

process, the construct terminates immediately.
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Figure 3.2 Flow Diagram of the Parallel Construct

TABLE 6

PARALLEL CONSTRUCT

PAR PAR
process 1 cl ? x
process 2 c2 ! y

process n

For example, if we have a parallel construct as
seen in Table 6, two component processes are executed

together, and are called concurrent processes. This sample

construct allows input to x and output from y to take place

together.

Concurrent processes communicate using channels.

When an input from a channel c, and an output to the same
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channel c are executed together, communication takes place

when both the input and the output are ready. The value is

assigned from the writing process to the reading concurrent

process, and execution of both concurrent processes then

continues.

Variables are not used for communication between"

the component processes of a parallel construct. However, a

variable may be used in two or niore component processes,

provided that no component process changes its value by

input or assignment. Two component processes of a parallel

construct may communicate by sending values using a channel.

One contains outputs to the channel, and the other contains

the inputs from the channel. The processes are said to be

connected by the channel. No other component of the parallel

construct may use the same channel.

c. Conditional

A conditional construct takes the form of a

conditional expression followed by a process, and it is able

to execute if the expression evaluates to TRUE. -As shown in

Table 7, a conditional construction takes the form of IF

followed by component conditionals. The construct is able to

execute if one of its component conditionals is able to

execute.

Process 1 is executed if conditional expression

1 is TRUE, otherwise process 2 is executed if conditional

expression 2 is TRUE, and so on. Only one of the processes

is executed and the construct then terminates. If there is

no component able to execute, the construct terminates

without any effect. Figure 3.3 shows the flow diagram of the

conditional construct. A sample of this construct in Table
7, increases n only if the value of e is 0.
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Figure 3.3 Flow Diagram of the Conditional Construct

TABLE 7

CONDITIONAL CONSTRUCT

IF IF
conditional expression I e 0

process i n :=n +
conditional expression 2 TRUE

process 2 SKIP

d. Alternative

Sometimes a process has a number of channels

associated with it and needs to perform one of a number of

actions depending on which channel first sends it a message.

This is achieved using the alternative construct, Figure
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3.4, which chooses just one of its inputs for execution. The

keyword ALT followed by a guarded process represents this

construct as shown in Table 8.

Im uv

II

MA I SS

Figure 3.4 Flow Diagram of the Alternative Construct

I,

TABLE 8

ALTERNATIVE CONSTRUCT

ALT ALT
guard-process 1 index ? ANY

process 1 number := number I 1
guard-process 2 sum ? ANY

process 2 SEQ
out ! number
number :0
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An alternative process waits until one of

guarded processes (inputs) is ready to execute. One of the

ready guarded processes is then selected and executed. The

construct then terminates. A guarded-process (input)

starting with an input from a channel is ready if an output

process is waiting to write to the channel. If the guarded

process is selected, the component process is executed. If a

guard contains an expression followed by an input or wait,

the guarded process is ready only if both the value of the

expression is TRUE and input or wait is ready. If a guarded-

process is itself an alternative construct, then it is ready

if one or more component guarded processes of the alterna-

tive construct is ready. If more than one guarded process

becomes ready at the same time, an arbitrary one is

selected. This may occur if the guarded processes contain

inputs on the same channel.

For example, a sample construct in Table 8,

either reads a signal from the channel index and increases

the variable number by 1, or alternatively reads from the

channel sum, and outputs the current value of the number

from the channel out, and resets it to zero.

e. Repetitive

The repetitive construct takes the form of the

keyword WHILE followed by a conditional expression, followed

by a single component process indented on the next line. As

shown in Figure 3.5, repetition construct repeatedly

executes the process until the value of the condition is

FALSE

The component process in the repetition

construct (Table 9) is executed as long as the expression is

TRUE, and the construct terminates. If the conditional

expression is initially FALSE, the process is not executed

and the construct terminates right away. For example, a
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Figure 3.5 Flow Diagram of the Repetitive Construct

TABLE 9

REPETITIVE CONSTRUCT

WHILE conditional expresssion WHILE a < 0
process I a := 0 - a

repetition in Table 9, converts negative numbers to

positive.

f. Replicator

A replicator is used with a constructor to

replicate the component process a number of times (Table

10). Figure 3.6 shows the flow diagram of replication.

A replicator can be used with SEQ to provide a

conventional loop. For example, 'SEQ i = 0 FOR n

causes the process to be executed n times.
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* Figure 3.6 Flow Diagram of the Replicator Construct

TABLE 10

REPLICATOR CONSTRUCT

SEQ i = [ base FOR count ] PAR i [ base FOR count ]
process process i

Replication can be used with PAR to construct an

array of concurrent processes. For example, 'PAR i = [ 0 FOR

n ]' constructs an array of n similar processes. The index i

takes the values 0,1,...,n-1, in process 0, process 1 ...

process n-I respectively.

Replicator construct can also be used with ALT

for reading from an array of channels.

The replicator declares an identifier to be the

replicator index such as i, giving its base value and a

count of the number of replications required. Its effect is

to form a sequential, parallel, alternative or conditional
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construct containing count components by replicating the

component process, substituting successive integer values

for the replicator index (starting at base). The substituted

value for replicator index in the last component will be

(base + count) - 1.

The replicator index can be used in expressions

but not constant expressions, it may not be changed by

assignment or input. An implemexitation may restrict the

values of base and count to be constants, particularly when

a replicator is used to form a parallel construct. If a

count evaluates less than zero or equal to zero, then an

empty construct is generated. This has the effect of termi-

nation for sequential, parallel and conditional constructs,

and the effect of never being ready to execute for alterna-

tive processes.

3. Declaration Types

Every variable, expression and value has a type,

which may be a primitive type or an array type. The type

defines the length and interpretation of values of the type.

Table 11 shows the primitive types which are available in

all implementations.

TABLE 11

DECLARATION TYPES

DEF constant
VAR variable
CHAN channel
BOOL boolean
BYTE vector
INT integer
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Array types are constructed from component types.

For example, [n] T is an array type constructed from n

components of type T. A channel type is either CHAN, or an

array type in which every component type is a channel type.

For example, 'CHAN x :' declares x as a new channel.

4. Named Processes

A process (procedure or suhbroutine) may be given a

name. For example, Table 12 shows a sample process, it

defines the named process square.

TABLE 12

A NAMED PROCESS

PROC square (INT n,sqr) =
sqr := n * n

Process square is called with its name and actual

parameters. For example, a call 'square (x,sqrx)' causes
'sqrx := x * x.

5. Expressions

An expression is constructed from operators, vari-

ables, numbers, the truth values TRUE and FALSE and the

brackets (and).

The boolean operators AND, OR and NOT operate on

boolean values and yield boolean results.

The arithmetic operators +,-,*,/ and \ yield the

arithmetic sum, difference, product, quotient and remainder

respectively. Both operands must be of the same integer or

real type.
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In a loop system, message transmission takes place in

the form of address blocks of data called frames or slots.

The local loop interface forms a frame, giving the address

of the destination interface, and transmits the frame onto

the loop. Each loop interface downstream of the transmitter

receives this frame, checks it destination L hress, and

immediately retransmits it back onto the loop if the proper

destination for the frame has n6t been reached. When a

receiving loop interface recognizes its own address as the

destination of an incoming, frame, it removes the frame from

the loop and delivers the message to the local attached

minicomputer. Digital transmission on the ring is time

division multiplexed. The channel capacity of the ring is

multiplexed into a series of time slots.

Loop architecture, especially applied to data acquisi-

tion, is attractive from a modular point of view. A sensor

may be placed anywhere on the loop with a simple interface

and may, if necessary, communicate with any node connected

to the loop. Since messages are passed from node to node

successively, the failure of a single node or path between

two nodes can bring down the entire ring. Thus, for unidi-

rectional, active repeater loops, the failure effect and

failure reconfiguration attributes are poor. Loop systems

are, however, available to improve system fault tolerance

(with passive repeaters or bypass relays).

For two-way communications, two channels must be used,

but in loop type architectures a single channel is suffi-

cient for communications. This system will obviously fail

if any one of the links or nodes fail. The reliability of

the loop can, however, be improved using the coupler. Other

more reliable loop architectures can also be implemented

using fiber optics. [Ref. 2]

The following section will present different types of

loops.
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in one direction only. Digital source signals (or sampled

and quantized analog signals) offered by the subscribers are

parceled and transmitted in blocks to'their destination.

Assignment of message blocks to subscriber stations is done

by using address coding. [Ref. 13]

Computer Aarm

Figure 4.2 Loop Configuration

To send a message from one node to any other, the

message is entered on the ring. It will then travel around

the ring until it either reaches the node addressed or

returns to the transmitting node. In some systems, the orig-

inating node removes the message, whereas in others the

destination node removes it. In the former case, the origi-

nating node can compare the original message with the

message which has circulated around the loop, thereby also

performing an error check on it. A bit is usually set in a

predetermined bit position in the message by the destination

node, to signal the transmitting node of message receipt. In

the latter case, the destination node removes the message

and usually performs the error checking on the message. This

approach obviously also reduces the traffic load on the

loop.
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The choice among the architectures is determined by the

number of sensors in the system, their physical location,

and the amount of data collected by the sensors for trans-

mission to the system processors. Where the number of

sensors is extremely large and data rates are very high.

The vulnerability to communications path failures can be

mitigated using redundant paths. The problems inherent in

any architecture are interprogram" communication and data-

base considerations, potential deadlock, and error recovery.

[Ref. 2]

Loop technology will be explained in details in the next

section.

C. LOOP COMMUNICATION SYSTEM

A Loop multiprocessor system can be defined as a system

which consists of a high-speed, unidirectional, digital

communication channel (e.g., twisted-wire pair or a fiber

optics link) which is arranged as a closed loop or ring.

Nodes such as mini or microcomputers, terminals, or periph-

erals can be attached to the loop channel by a hardware

device known as a loop or ring interface. [Ref. 2]

The growing requirements of local communication systems,

such as in-house telephone systems, and the introduction of

new facilities (alarms, controls, data services, paging)

have led to a search for new network concepts. Rather than

having several special-purpose networks it would be desir-

able to provide one single universal system for transmitting

and switching of all types of information. Such an inte-

grated system, however, should not depend on complex and

expensive central switching equipment. An example of a loop

with the various subscriber stations connected at arbitrary

points is shown in Figure 4.2' the signals are transmitted

'Reproduced by permission.

51



and/or software or whether the design must be performed

"from ground up". Cost is also related to the number of

processors to be used in the system, the amount of memory

required in each node of the system, and the bandwidth of .

communications links between computers. The cost of

completely interconnected systems tends to be high compared

with loop-and bus-based systems. Throughput capacity is as

much a function of interconnect structure as it is of link

technology. Use of a'twisted pair of wires limits data rates

to a few megabits per seco.nd over a distance of a few thou- .7

sand feet. Even at this distance, problems are encountered

with too many drops if we are dealing with a bus-type

system. The bandwidth can, however, be increased using

parallel lines, coaxial cable, or fiber optics links. It is,

of course, possible to use dial-up or leased telephone

lines, but that limits the maximum bandwidth typically to a

range of 4800 to 50,000 bit/s. Higher bandwidths are also

possible with the use of microwave or satellite links, but

this will today have a profound impact on total system cost.

[Ref. 2]

Some generalized observations can be made regarding each

type of architecture in the areas of cost; modularity, flex-

ibility; reliability, availability, fault tolerance;

performance, throughput; ease of development, "off-the-

shelfness"; and form factor (design attributes). Depending

on how the various design attributes are weighted (which is

application dependent), one or more desirable interconnect

structures can be selected. The various types of groups of

interconnect technology methods are: Complete

Interconnection, Packet Switched Network, Regular Network,

Irregular Network, Hierarchy, Loop or Ring, Global Bus,

Star, Loop with Switch, Bus Window, Bus with Switch, and

Shared Memory.
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Several basic design alternatives are available for

developing a multiprocessor interconnect structure [Ref. 2].

Information between computers can be transferred from source

to destination either directly or indirectly. One or more

switching entities may be employed if an indirect transfer

strategy is employed. This intervening switching entity may

perform and address transformation or route the message onto

one of a number of alternative odtput paths. Examples of

systems based on indirect trahsfer are loops, buses, or star

configurations, or packet-switched systems. The major

difference between direct and indirect transfer strategy

lies in the distribution of message transfer "intelligence". -

Indirect transfer methods require more complex communica-

tions capability but also increase the fault tolerance of a

system. Indirect transfer methods are based on either

centralized or decentralized routing of messages.

Another design alternative exists in terms of selecting

the message transfer path between computers. It may be

dedicated as in the case of the loop, star, or completely

interconnected system or shared as in the case of bus,

packet-switched, or shared memory systems. It may also be a

combination of both as in hierarchical systems, where the

computer at the top of the pyramid receives messages from

several computers, whereas computers at the bottom of the

hierarchy have a single path to the computer "above" it.

Generally, a system based on a dedicated path structure

is more fault tolerant than a system using shared paths. If

a path that is accessible from more than two points fails,

no alternative way exists to transfer data between computers

in the system. However, systems with redundant paths can be

used to minimize the effects of single-point failures on the

total system.

Cost of various interconnect schemes depends on whether

a system can be developed using off-the-shelf hardware
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database searching. Networks of transputers can provide the

performance needed for both applications. Signal processing,

such as the Fast Fourier Transform algorithm, maps easily

onto a pipeline. The pipeline can accept the input samples

at up to 100 KHz., which more than covers the full audio

spectrum. A 64 point FFT requires six transputers in the

pipeline, a 256 point FFT requires eight and 1024 point FFT

requires ten transputers. A pair df pipelines, interlinked

at each stage, is able to accept input samples at up to 200

KHz. Higher frequencies can be handled by using more

transputers in parallel. [Ref. 6]

An array or a pipeline can also be used to do searching.

Provided that the search requests can diffuse through the s

network and the answers converge, the shape of the network

does not matter; it can even contain faulty devices. The

full internal memory of each transputer can be searched 1000 V

times per second. With external memory attached to each

transputer, the search rate is slower, but 64 Kbytes per

transputer can be searched at least 30 times per second.

If we look at other applications, such as image

processing, finite element analysis, matrix manipulation,

telephone switching systems, fault tolerant systems and

artificial intelligence naturally lend themselves to arrays,

loops or networks of'transputers.

B. MULTIPROCESSOR INTERCONNECT STRUCTURES

The traditional approaches to interconnect computers is

based on the use of either serial or parallel links. For

tightly coupled systems (shared memory) where maximum

distances between transmitters and receivers are in the tens

of meters range, parallel cables are typically used with

8,16, or 32 bits for data and an equal or perhaps larger

number of bits for parity check and control lines.
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bytes, then awaits an acknowledgement. This signifies that

the receiving transputer is ready to accept another byte.

Transmission is continuous because the receiving transputer

acknowledges as soon as it starts to receive a data byte.

Moreover, this asynchronous protocol guarantees reliable

transmission despite sending or receiving delays. [Ref. 9]

According to the Japanese, an intelligent interaction

between people and computers can be achieved with computers

which perform a thousand times faster than present day

systems. This will only be possible using concurrency, and

the transputer has been designed to make such fifth genera-

tion systems a possibility. [Ref. 10]

Transputers have special instructions to schedule

concurrent processes and to provide communications between

them. The transputer does 5 or more MIPS (Mega Instructions

Per Second) even when not used in parallel. Hardware

supports the parallel-processing language, while memory-

intensive architecture speeds execution. [Ref. 11]

A concurrent system is first and foremost a multipro-
cessor system. The term 'concurrent' is also used in the

context of multi-tasking systems; such systems are better

described as pseudo-concurrent. Concurrent systems are

likely to be no easier to design and implement than non-

concurrent systems. Even in such sequential systems, the

advantage of design and implementation using a high level

language rather than machine-level programming is well

recognized; it seems therefore that machines for concurrent

systems should encompass the abilities of excellent high

level language machines on top of any unique concurrency

aspects. [Ref. 12]

Arrays, pipelines and loops of transputers can be used

to provide greatly increased performance by exploiting the

concurrency inherent in many applications. Two examples

which require high performance are signal processing and
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Figure 4.1 Throughputs of the Developing Technology

comparison with the memory. This has led to the Von Neuman

bottleneck problem where a single processor is connected to

vast amounts of memory. The economics of the VLSI are

different. Now, a single wafer of silicon can contain 2

megabytes of memory or 256 conventional microprocessors. To

exploit this potential, it will be necessary to build

systems with a much higher degree of concurrency than is

currently possible.

?- The transputer is designed as a programmable component

for multiprocessing tasks to implement such systems. System

architecture is optimized to execute OCCAM, a concurrent

programming language. This software sees the system as a

collection of concurrent processes that communicate with

each other and with peripherals through channels. The same

OCCAM program a transputer network executes can run

unchanged by a smaller network or a single transputer. The
sending transputer transmits messages as a sequence of
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A distributed processing system is also more dependent

on communication technology, particularly where the

computers are widely dispersed and the peak traffic demands

between the computers are high. The design and development

of a unique distributed processor system may require exper-

tise both in hardware and software areas. The advantages and

disadvantages of the distributed multiprocessing systems are

given in the Table 13 . [Ref. 2]

TABLE 13

MULTIPROCESSOR SYSTEMS ADVANTAGES&DISADVANTAGES

ADVANTAGES DISADVANTAGES

Increased reliability Increased H/S complexity
Increased survivability Difficult system testing
Increased processing power Hard failure diagnosis
Increased responsiveness More communications
Increased modularity Depend on com.technology
System expandability Unique expertise needed

A. MULTITRANSPUTER CONCEPT

The system performance has increased regularly by a

factor of ten each decade in the past as seen in Figure 4.1.

This improvement has been achieved by advances in

circuit technology and by increasingly complex systems. VLSI

(Very Large Scale Integration) technology offers the poten-

tial of much greater circuit complexity for the future but

only modest increases in circuit performance.

The economics of uniprocessor systems are based on the

historical perspective that processing is expensive in
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provided as needed, to ensure proper response time.

Multiprocessor systems can also be designed to be cost

effective when applied to a wide variety of applications,

where the number of processors can be determined by the

distributed processing requirements. A properly designed

distributed processing system threatened by overload can be

incrementally expanded by simply adding more processors.

Because of the above advantages, a large number of

applications of multiprocessing systems can be seen such as

control of electric power. generation, distribution, and

consumption, nuclear power processing facilities safeguard

and control, health care delivery in hospitals and medical

centers, climate control, security, waste disposal, many

fire protection in large buildings, and in defense systems.

The disadvantages may or may not outweigh the advan-

tages, depending on the system-unique requirements. On the

minus side, the designer may be faced with increased soft-

ware complexity. Application software may be more costly to

develop for a distributed rather than a centralized system.

In contrast to'a single central processor based .system with

only one executive, a distributed system typically requires

each processor to contain its own individual executive that

must be capable of communicating with all the other execu-

tives in the total system. This, in turn, will require that

each individual executive provide a task handling capability

where the tasks resident in various processors can communi-

cate with each other, and, in case of local software or

hardware errors, diagnostic capabilities exist to localize

"bugs". This is not to say that diagnostic or error checking

software is not needed or used in large centralized, single

processor systems; however, the diagnostic software develop-

ment for a distributed systems is usually more difficult and

costly.
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IV. MULTIPROCESSOR-MULTITRANSPUTER SYSTEM

. A "pure" multiprocessor contains two or more processors

of approximately comparable capabilities, which share access

to all of memory and all input-output (I/0) channels,

control units, and peripheral devides. The entire system is

controlled by a single operating system. More frequently,

multiprocessor systems share only portions of memory and

input-output channels. The processors have dedicated memo-

ries for storing programs and local data and share data in

segments of common memory.

Multiprocessor systems usually make it easier for the

user to access the system, they generally provide increased

performance through resource sharing, and they often

increase the availability of a system. Multiprocessing

systems can provide adaptability and rapid reconfiguration

with the system functioning at different times as a very

large and complex problem solver or as a network of smaller

machines each dedicated to a unique task, or as something in

between. A network of microprocessors can quite often dupli-

cate the capability of one large expensive system at lower

cost. They can also'provide increased reliability since the

total system can continue to operate despite individual

processor failures, albeit with reduced capabilities,

provided that some of the links between the processors

remain intact. Also, since redundancy can be achieved at a

lower cost using processors distributed over a large area,

the survivability of the system, particularly in military

applications can be increased. Furthermore, a distributed

processing system can provide increased, distributed power

and responsiveness because it can be closely tailored to the

application. Additional multiprocessor systems can be
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separate transputer. Port allocations are used to allocate

channels to ports. The variables used in a placement must be

declared within the placement. The values of the timer on

different transputers are unrelated. A parallel construct

configured for a network may be reconfigured for an indi-

vidual computer.
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a. Prioritized Parallel

A parallel construct may be configured for a

single transputer. The transputer shares its time between

the component processes, and the channels are implemented by

values in store. Therefore, OCCAM also contains the priori-

tized parallel construct declared as PRIPAR in addition to

the regular parallel construct. This construct provides a

different priority for each component process. Each compo-

nent process of a PRIPAR construct is executed at a separate

priority. The first process has the highest priority, the

last the lowest. If P and Q are two concurrent processes

with priorities p and q such that p<q, then Q is only

allowed to proceed when P cannot proceed. An implementation

may restrict the number of components which a prioritized

parallel construct can have. And also an alternative

construct can be used to provide the prioritized input

primitives.

On any individual transputer, the outermost

parallel construct may be configured to prioritize its

components. A prioritized parallel (PRIPAR) construct

ensures that a higher priority process always proceeds in

preference to a lower priority one. The progress of a higher

priority process is not affected by any lower priority one,

except by communication on connecting channels. If several

concurrent processes at the same priority are able to

proceed, each one is given an opportunity to proceed in

turn. The T424 transputer supports two levels of priority,

priority 0 (high priority) and priority 1 (low priority).

b. Placed Parallel

A parallel construct may be configured for a

network of transputers by using the PLACED PAR construct.

Each component process (termed a placement) is executed by a
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The operators /\,\/ and >< operate on integers and

yield the bitwise and, or, and exclusive or operations of

the operands respectively.

The relational operators yield a result of type

boolean, and both operands must be of the same type. The

relational operators = and <> operate on any primitive type,

and represent equals and not equals. The operators >,,>

and <= operate on integers and reals, and represent greater

than, less than, greater than or equals to, and less than or

equals to.

Type conversion may be performed by using one of the

type conversion operators $, SROUND, and $TRUNC.

A string is represented as a sequence of ASCII char-

acters enclosed in double quotation marks " If the string

has n characters, then it is an array of type [n] BYTE.

6. Configuration

Configuration is simply the allocation of processing

resources to concurrent processes in a program. It is used

to meet speed and response requirements by distributing

programs over separate, interconnected computers, and by

placing and prioritizing processes on single computers.

Configuration does not affect the logical behaviour of a

program. Simple implementations may omit or ignore some or

all the configuration facilities. However, it does enable

the program to be arranged to ensure that performance

requirements are met.

Every computer has a local memory and a set of

- numbered ports. A physical connection between two computers

connects a port on one computer to a port on the other

computer. This implements up to two channels between the

_- computers, one in each direction.
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D. TYPES OF LOOPS

Categorization of the loop configurations is based on

the type of message-transmission mechanism employed. There

are three main types which will be introduced in the

following subsections: the Newhall-type, Pierce-type, and

Delay Insertion type. [Ref. 2]

1. Newhall Type Loop

A control token or character is passed around the

loop in a round-robin fashion, from loop interface to loop

interface. The interface currently in possession of a token

is allowed to transmit messages of arbitrary length onto the

loop; the other interfaces are allowed only to receive

during this time. The control token is passed to the next

* node downstream allowing the node to transmit when a trans-

mission is completed. Only one transmitter can be active at

any one time, therefore an interface will never experience

interference during the transmission of a message. An inter-

face must always wait for the control token to be passed to

it, even when it is ready to transmit a message. A Newhall

loop provides for variable length message transmission, but

it does not allow concurrent use of the loop channel by two

or more transmitter interfaces.

2. Pierce Type Loop

The communication space on the loop is divided into

an integer number of fixed-size slots into which message

packets can be stored. It might be considered of as a

circular track, with box cars end to end, where some may be

full and others are empty. The control of a Pierce type loop

is centralized. Each slot contains a bit that indicates

whether it is filled with a packet or empty. So, all a

transmitter needs to do is to divide each message into
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packets, to wait for empty slots to pass by, and when this

occurs, to fill them with packets. Because of the slots are

fixed size, user messages are blocked into fixed-size

packets, prior to being multiplexed onto the line. Various

multiplexing techniques can be used.

3. Delay Insertion Type Loop

This loop is superior in dverall performance. Each

ring interface has a domplete set of control capabilities.

Delay Insertion Lool has been chosen for our implementation

and it will be explained in detail in the next chapter.

E. LOOP ANALYSIS

1. Why Loop ?

A very attractive configuration in multiprocessor

systems is a loop, because of its remarkable advantages

[Ref. 2]. These advantages are:

a) Only one path for the message to follow in reaching

its destination; no message routing problem in system.

b) No transmitter needs to know the location of its

receiver.

c) Broadcast message transmission is so easy to achieve,

therefore every node can pick up the message.

d) Connections can be established very quickly and easily

(important for traffic with short message duration);in

several multiprocessor systems based on intermittent

inquiry-response nature, messages are usually so short

(credit-card verification, electronic fund transfer,

goods ordering, information retrieval applications).

e) Digital data transmission eliminates the need for

modems and data conversion.

f) Low initial capital investment in loop configurations

(cost proportional to number of users of interfaces).

g) A loop configuration provides a very high throughput
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(nodal interfaces and not processors are used to relay

messages; more messages can be in transmission at the

same time). wr

h) Loops are easy to implement with distributed switching
mechanisms without the need for any sophisticated

common control (because each loop interface can

provide its own bus arbitration and synchronization).

The primary advantage of a loop system is its rela-
tively low cost and high modularity. Node processor failures .

can be masked by load sharing among the remaining processors

if task addresses are kept in tables in each node and

checked by the communications software in each computer. The

loop approach is particularly attractive when wide-band

coaxial or fiber optics buses are used to interconnect the

nodes.

A loop is very vulnerable to failures of the inter-

faces because of its serial organization. Reliability is one

major disadvantage, but it can be increased with different

methods.

2. Performance of Loop

Some simulation studies on the Distributed Loop

Computer Network (DLCN) showed that for low channel utiliza-

tion the performance of the Newhall loop closely approaches

that of the DLCN Delay Insertion Loop. As the traffic level

increases, the comparative attractiveness of the Newhall

loop diminishes.

The Pierce loop approach is less attractive than

either the Delay Insertion Loop or the Newhall Loop, at low

levels of line utilization, because a message always has a

mean wait time of half a packet interval and must then be

transmitted in several packets. At higher traffic levels,

the performance of the Pierce loop is better than that of

the Newhall loop because of the packet mechanism permits for
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two or more concurrently active transmitters. The Pierce
loop presents optimal performance characteristics if the

message is the same size as the packet. Generally, this does

not occur in a real multiprocessor system environment.

A Delay Insertion Loop is more efficient than either

of the other two types since every message is composed of

message units and the main advantage is that short messages

have a short delay time even under heavy loads. The average

transmission time on a loop is independent of traffic load

for Pierce and Newhall loops. But, the mean transmission

time increases significantly with higher traffic loads in

the delay insertion loop. The Delay Insertion Loop message

transmission technique is superior where queuing delays for

messages entering the loop are short.

3. Reliability of Loop

Vulnerability to errors is the major drawback of a

loop. Transmission errors can affect the proper functioning

of loop organization. A distortion of the receiver address

will either result in a packet being delivered to the wrong

destination or, if a mutilated address is not being

"handled" by the system, a "lost packet " will keep circu-

lating around the loop. Several message-transmission schemes

for loop-based systems use a central monitor to check the
loop and remove packets that have circled the loop more than

once without being received by any of the nodes. Schemes

exist where each interface acts as a loop monitor.

Loop interface failures can cause either a loss of

access to the loop or a breakdown in loop operation because

of the serial nature of a loop. This problem can be solved

with electrical relay circuitry and also an additional
protection can be provided by opto-isolators.

The reliability of loop configurations can be

increased by providing a standby loop that parallels the
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main loop. There are two ways, By-Pass and Self-Heal, in

which a standby loop can be used in multiprocessor system

design.

In the By-Pass technique, traffic can be routed

around any number of malfunctioning interfaces, thereby

maintaining the connectivity of the loop. The major short-

coming o-f this technique is the effect of a failure on a

reconfiguration unit.

By using Self-Heal technique based on bidirectional

double-loop structure, complete connectivity can be

maintained when any number of adjacent terminals or reco-

nfiguration units fail. When two nonadjacent nodes or reco-

nfiguration units fail, the sections of the loop on either

side of the failure are isolated. This method is highly

reliable where a limited number of devices are attached to

the loop.

New multiplex systems, redundant communication

loops, hierarchical multiloop systems, increasing the stages

in a multi-stage loop, and new switch configurations can

also increase reliability of the loop.

F. SYSTEM CONFIGURATIONS WITH THE TRANSPUTER

As seen in Chapter II, the T424 transputer provides four

communication channels to use in a system configuration. So,

possible system configurations for the transputer may be one

of the following structures.

1. Matrix Structure

Each computing element in this two-dimensional
structure is connected to each other with one channel (If a

square matrix is desired for symmetrical structure, the

number of computing elements will be 4, 9, 16, 25, 36 and so

on). It provides a very large number of communication rings,

58



and multiple communication paths but there is no further

channel redundancy between two computing elements (Figure

4.3).

-- 71 13

.. 4'

Figure 4.3 Matrix Structure

2. Tetragonal 3-D Structure

In this structure, each computing element is

connected to three elements and they build a new computing

group which still has four available communication channels

for other computing group connections (Figure 4.4).

3. Loop/Ring Structure

Each computing element in this structure is

connected to its two neighbors with two channels each. It

provides redundancy for communication channels between two

computing elements (Figure 4.5).

.. 59

.44* 59'- " " " ' ' " " " " "' ' " " ' ' ' ' " """ """ " " ' " ' ""



!Eq I a

Figure 4.4 Tetragonal 3-D Structure

e .e

Figure 4.5 Loop/Ring Structure

4. Butterfly Structure

As a special implementation of a ring structure, a

butterfly structure is a good solution for the Fast Fourier

Transformation or similar engineering applications (Figure

4.6).
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Figure 4.6 Butterfly Structure

5. The Other Structures

There is no limit to the size, function, or shape of

a network of multitransputer systems. The transputers can be

thought of as building blocks like bricks since they can be

built into systems of arbitrary size, function, or shape.

Therefore, the system overall performance is a function of

the number of transputers. [Ref. 10]
The other possible structures can be. a functionally

distributed network (Figure 4.7), a toroidally connected

array (Figure 4.8), a complete loop regular array (Figure

4.9), and a bigger transputer built from four big

transputers (from Tetragonal 3-D Structure) (Figure 4.10).
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Figure 4.9 A Complete Loop Regular Array
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Figure 4.10 A Bigger System Built from Four Big Ones
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V. DELAY INSERTION TYPE LOOP COMMUNICATION SYSTEM

The Delay Insertion Type Loop has a great importance in

the concept of a local loop communication systems with

distributed control. Various performance studies have shown

that its overall performance is *superior to Newhall and

Pierce loop types. [Ref. 2]

A. INTRODUCTION

The delay-insertion technique was simultaneously devel-

oped by E.R.Hafner, Z.Nenedal, M.Tschanz for telephone

switching purposes and by researchers at Ohio State

University for the Distributed Loop Computer Network (DLCN)

system. The main difference between the two is that variable

rather than fixed messages are used in the DLCN scheme. The

general operation of Delay Insertion Type Loops is described

utilizing the loop communication system developed by Hafner.

He refers to this scheme as "loop extension strategy".

Digital signals offered by the subscribers are parceled

and transmitted in blocks to their destination using

address-coding. Access of the terminals to the loop is

gained by switching a delay network (shift register,

containing the message block to be transmitted) into the

loop line. This strategy guarantees that every station is

able to transmit a message at any time regardless of the

traffic conditions in the loop. A laboratory model for line

frequencies of about 10 megabits/sec is presently being

built. It allows data and telephone connections including

such features as call back, call transfer and forwarding

loop transmission to be realized by means of a three-core

symmetrical cable which carries the data sequences and the
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timing information separately. This allows the use of an

extremely simple regenerator. Possible applications include

integrated in-house communication systems and control and
supervisory systems for manufacturing processes, railway

stations and trains. [Ref. 2]

B. LOOP ORGANIZATION AND OPERATION

Each subscriber station is equipped for extracting and

introducing information from or into the loop. It also

contains all the logic functions necessary to control these

connections; there is no central exchange. Depending on the
task of a station, its structure may be more or less

complex, e.g., a receive-only station for one single command
will need nothing but a decoder for a fixed address and the

coupling element to the line. The basic diagram of a more

general station that can transmit information as well as
receive is shown in Figure 5.1.2 [Ref. 13]

_ OUT

(SHIFT HLGISTERI

Figure 5.1 Basic Function of Delay Insertion Loop

It contains a delay element, preferably a shift
register, which can be switched into the loop line, and a

receiver that is permanently connected to the line. The

2 Reproduced by permission. I
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delay of the shift register is. equal to the length of the

message block to be transmitted by this particular station.

In the idle state (passive source) the shift register is

shunted and the incoming bits or blocks pass on to the

outgoing line without significant delay. If a message is to

be transmitted, however, the delay element is switched into

the line which results in an extension of the loop. The gap

generated in the bit stream permits insertion of the message

block. This is done automatically by assembling the message

packet in the shift register before transmission. The

message travels along the loop and is received by every

subscriber station. It will only be processed, however, by

the station that matches the identification label (address).

In the simplest case the message block is taken out of

circulation after one entire run at the transmitting station

by disconnecting the shift register. This also cancels the

loop line extension. [Ref. 13]

For the practical implementation of this basic function,

the slightly modified arrangement is used as shown in Figure

5.2.' Especially, we will concentrate on this implementation

in this thesis.

Each ring interface has a complete set of control capa-

bilities. The detailed diagram shown in Figure 5.3' illus-

trates the basic principle of ring interface operation.

The Receiving Shift Register (RSR) is permanently

connected to the incoming line and performs both the

receiving and block dropping (removing messages from the

loop). There is a second shift register (TSR) for transmit-

ting, i.e., preparing of the message blocks for insertion in

the loop from the node processor. Sending and receiving are

controlled by a switch (SW) with three positions connecting

'Reproduced by permission.

'Reproduced by permission.
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Figure 5.2 Practical Delay Insertion Loop
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Figure 5.3 Delay Insertion Loop and its Operation

either the output of the TSR, the RSR or the incoming loop

line to the outgoing line.
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The Delay Insertion Loop methodology is not limited to

multitransputer systems, it can also be used with any multi-

processor or multiprocessor cluster computer systems.

The single unidirectional loop is a very simple communi-

cation system to implement, but it is subject to loop

failure. Adding a second loop to the system can be one of

the practical methods to increase the reliability.

The concurrency can be used" to provide considerable

gains in performance in many application areas. The T424

transputer, is a new product with high performance, which

allows concurrent processing. It is an improving hardware

component in a new phase of the computer technology. To

design concurrent systems is difficult even with a rela-

tively simple hardware architecture like the T424

Transputer. However, as understanding of concurrent

processing improves, very powerful multitransputer systems

can be generated to support real-time processing.

OCCAM, based on a model of concurrency, is a simple

language in which to learn to write programs. But the

concurrent processing is hard to understand and to imple-

ment, especially for inexperienced people. Some expertise is

required for the application of the concurrent system. If

the number of processors or transputers in a system is

increased, the software implementation becomes more complex,

and especially the communication between transputers or

transputer systems will be more complicated.

In software programming with OCCAM, some execution

errors such as Deadlock, Stop and Access Violation can be

often encountered until one is familiar with the PAR

(parallel), ALT (alternative) constructs, and using channels

for input and output. The other constructs are so easier and

especially the SEQ (sequential) construct provides statement

by statement execution like the other conventional program-

ming languages.
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VI. CONCLUSIONS

A. SUMMARY

We have constructed a model of a Delay Insertion Loop

interface to interconnnect clusters of computers. The

Transputer T424, a hardware component which is becoming

available soon (December 1985), was used in a simulated mode

on the VAX 11/780 to construct the model of the Delay

Insertion Loop interface. The programming language OCCAM

which allows concurrent processes to be executed in parallel

was used to create the model for multiprocessing in a

multitransputer system.

The features of OCCAM and the capabilities of the T424

Transputer were presented in detail. The possible structures

with the Transputer in multiprocessing environment, the

possible multitransputer systems and the ideas of multipro-

cessing were explained.

The Loop technology was examined and the Delay Insertion

Loop was emphasized and some suggested configurations with

four and sixteen transputers were made. Using OCCAM and the

Transputer, The Delay Insertion Loop Interface was imple-

mented for the Four-Transputer Single-Unidirectional Loop

System using the VAX 11/780 VMS system.

B. RESULTS AND COMMENTS

This thesis work showed us that the Delay Insertion Loop

Network Interface with in a multitransputer system is a very

attractive alternative and likely to achieve high perform-

ance in many present applications. It may become a good

candidate for many military real time applications in the

future.
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D.I.Loop.Interface processes are executed in parallel inside

the PAR construct with the corresponding transputer channels .j

and the transputer numbers as actual parameters. In other

words, four transputers are run in parallel.

As seen in our program segment, OCCAM provides

very useful and effective tools for concurrent processing.

But, in spite of the fact that our program matches

completely with OCCAM Reference Manual [Ref. 5], the keyword

NOW (local time function, provides present time) is not

accepted in its syntax checker and compiler. Therefore, the

WAIT function with NOW and AFTER, as a watchdog timer

couldn't be implemented in the VAX 11/780 VMS system.
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part, one of two guards is 'in ? code'. If there is an

incoming message during transmission, its component SEQ

process is executed. Incoming message (CODE) is stored in

buffer (BUFFER2), then BUFFER2 becomes full with message and

variable FULL becomes TRUE. If there is no incoming message

during transmission period, wait time expires (second guard

in ALT) and then "TIME IS OUT. NO INCOMING MESSAGE" will be

displayed on the CRT screen. In'SEQ construct inside PAR

(this part represents the transmitter), the message CODE is

generated by CODE.GENER.ATOR, and OUT channel transmits the

CODE and then SWITCH.POSITION becomes 3 immediately (the

system goes to State 3).

In 'WHILE switch.position = 3' (State 3), two

alternative constructs execute in parallel inside the PAR

construct. In the first ALT, if variable FULL is TRUE, in

other words if BUFFER2 is full with message, OUT channel

sends the message from BUFFER2. Otherwise a wait time

expires while the receiver waits for an incoming message,

then "TIME IS OUT" message is displayed on the CRT screen.

In the second ALT inside the PAR construct, i§ channel IN

has a CODE (if there is an incoming message), .then the

message CODE is decoded by DECODER and it is checked for the

originating (source) transputer number. 'IF source.tr.no

tr.no' (if the transputer generated the message), then its

own message is removed from the loop to prevent the further

circulation of the message. The SWITCH.POSITION becomes 1,

and the system turns back to State 1. If the message is not

its own, OUT channel forwards the message CODE. In the

second guard, wait time expires if its own message is not

received, then "TIME IS OUT" message is sent to the CRT

screen. If a fault tolerance system is designed, it can be

activated here for faulty communication.

In the main program part, actual channels linkl,

link2, link3 and link4 are declared and four 1:
I7
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(CODE) on input channel IN, it is decoded by DECODER, then

it is checked for destination address. 'IF

dest.tr.no=tr.no' (if message is for us) then the message

(CODE) is copied into a buffer (BUFFER1). SENDER.CHANNEL

sends user process number (PR.NO) for execution. If message -

is not for us (here, it is TRUE), OUT channel passes the

CODE to the next transputer (By-pass, just passes the

message without doing anything). In the second guard, there

is a special construct 'WAIT NOW AFTER clock+timeout'. This fr !.

construct provides a wai.t function for a period of time

(timeout is one complete message block execution time). If

time is out (if there is no incoming message and time period

expires), then its component process executes, a "TIME IS

OUT. NO INCOMING MESSAGE" on the CRT screen. In the second

ALT (alternative) construct, there are two guards. The

first one is 'full & SKIP', SKIP is always TRUE, if full is

TRUE (it means BUFFER2 is full with message), then its

component process is executed (here OUT channel sends the

message in BUFFER2). The second guard is a special WAIT

function as seen above, it provides wait time,. if TIMEOUT

period expires (time is out), then its component process

executes, a "TIME IS OUT" message on the CRT screen. In the

third ALT construct, there are again two guards, one is

'transmission.request ? ANY' and the other is special WAIT

statement as seen before. If there is a transmission request

from the user, then a TRANSMISSION.REQUEST channel will have

a signal and then its component process 'switch.position :=

2' will be executed, so the system will go to State 2. If

time is out (second guard), there is no transmission request

from the user, then the wait time period for the request

expires and a "TIME IS OUT. NO XMISSION REQUEST" message is

provided.

In State 2 ('WHILE switch.position 2'), one

ALT and one SEQ construct are executed in parallel. In ALT
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TABLE 14

CODE AND ITS DIGITS

max. value 2147483647

x msg.type(0,1,2)
dd dest.tr.no

code digits xddsspprrr ss source tr.no
pp process no
rrr: responses

CODE.GENERATOR process generates the CODE interpreted as 10

decimal digits which includes DEST.TR.NO (Destination

Transputer Number), SOURCE.TR.NO (Source Transputer Number)

and PR.NO (User Process No to be executed). The DECODER

process decodes the CODE by using division and remainder

operations, and determines destination, source transputer

number and user process number.

The general system is implemented in an infinite

loop by using WHILE TRUE. The variable FULL is initialized
with FALSE, CLOCK with NOW function and SWITCH.POSITION with

1 (switch is initially at 1). The variable SWITCH.POSITION

will simulate the positions of the switch and provide the

states. Three states, WHILE switch.position=l, WHILE

switch.position=2 and WHILE switch.position=3 are executed

sequentially being in SEQ construct.

In State 1 ('WHILE switch.position=l'), three

operations or three ALT (alternative) constructs execute in

parallel in PAR construct. In the first ALT (this portion

represents the receiver), there are two guards, first is an

input and the second is a special wait statement. In the

first guard, 'in ? code', if there is an incoming message
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a. Message Format

A decimally coded message block communication

protocol is used to obtain efficiency. For simplicity, there

is no data passed in the message block. The message block

includes the message type, destination transputer number,

source transputer number, process number and message

responses (error, receive etc.). This coded message block is

accepted in coded form by the loop interface system and is

used by the same system to determine what should be done

with it. The coded message block has been named as CODE in

the implementation. The CODE is a binary 32 bit two's

complement word interpreted as a decimal integer in the

range -2147483648 to 2147483647. Only positive values are

used. The first digit of the ten-digit code represents the

message type. This digit is not used in our implementation,

but it can be used for priority (0,1,2). The next three

two-digit groups are used to show destination transputer

number, source transputer number and process number respec-

tively. Each value ranges between zero and 99, so 100

transputer addresses and 100 processes can be used in this

system as a maximum. Table 14 shows the CODE and its digits.

b. The Algorithm of the System

D.I.Loop.Interface process (procedure) (Appendix

A) has an input channel IN, an output channel OUT and corre-

sponding transputer number TR.NO as formal parameters. In

local declarations, TRANSMISSION.REQUEST and SENDER.CHANNEL

as local channels, TIMEOUT as a constant (one circulation

period), SWITCH.POSITION, CODE, DEST.TR.NO, SOURCE.TR.NO,

PR.NO, CLOCK, FULL, BUFFERI and BUFFER2 are declared as

local variables.

There are two processes (procedures) in

D.I.Loop.Interface, CODE.GENERATOR and DECODER.
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3. OCCAM Implementation of the System

The Delay Insertion Loop Interface in our implemen-

tation, as shown in Figure 5.7, provides inter and intra

communication between systems, transputers and processes. It

also provides a fault detection (error check) feature during

communications, using watchdog timers and acknowledging

techniques.

KU' IWI UM LOOP INThCWl

I

I I111 t l
.I $I

L"

Figure 5.7 Implementation of Delay Insertion Loop

The Delay Insertion Loop Interface Process (Appendix

A) accepts inputs from links or software (OCCAM) channels.

At proper instances in time, the Delay Insertion Loop

Interface Process sends messages through the transputer

links or OCCAM channels. Three different communication

types are achieved by D.I.Loop.Interface. These are by-pass

(from outer transputer to outer transputer), internal disri-

bution (from outer transputer to inner process) and external

distribution (from inner process to outer transputer). More

briefly, D.I.Loop.Interface listens to link and user

channel, determines the communication type, transmits and

receives the message through the channel or link.
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3 for simultaneous listening and receiving their own

messages. All the operations occur at the same time as

explained-before. In our implementation in the simulated

mode on the VAX 11/780 VMS system, these operations occur

concurrently with the uniprocessor switching from one

process to another by timeslices.

(4.2) :0

X.I 1 I I I-TU

-.:----- I I
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Figure 5.6 Simultaneous Transmission of Four Transputers

Software imlementation of this system will be

presented in the following subsection.
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As shown in Figure 5.5, there are four transputers

in the system, TR.1, TR.2, TR.3 and TR.4. They are connected

with one link (channel) to each other; linkl, link2, link3

or link4. Initially every transputer is in State 1. At any

instant (say tO), if TR.l wishes to transmit a message to

TR.3, then TR.l goes to State 2, and the output channel

linkl will transmit the message and transition to State 3.

TR.2 being in State 1, is listening for messages and the

message is received. It is not intended for TR.2, so it will

retransmit (just passes) the message through the link2 and

remain in State 1. TR.3 is also in State 1, listening to the

input channel link2 for the message. It recognizes the

message as intended for it, copies, acknowledges and passes

it on through link3 staying in State 1. TR.4 is also in

State 1, receives and retransmits (passes) the message via

link4 and remains in State 1. Finally, after one complete

circulation, TR.1 receives the acknowledged message and does

not pass it on and transitions to State 1.

All transputers can also transmit a message at the

same time being in State 2. Every transputer is initially in

State 1. Each transputer has an individual transmission

request. Figure 5.6 illustrates the multiple transmission

request situation, where horizontal timelines describe what

is taking place in each of the four transputers and the

adjacent lines describe the activity on the connected links

(link 1 of computer 1, L1.1 to link 3 of computer 2, L3.2).

The link operation is independent of the processor

operation, but the communicating links are completely

synchronized in their operation. As shown in Figure 5.6,

TR.l wants to transmit a message (A) to TR.3, TR.2 wants to

transmit a message (B) to TR.4, TR.3 wants to transmit a

message (C) to TR.1, and TR.4 wants to transmit a message

(D) to TR.2 simultaneously, thus each transputer transitions

to State 2. After the transmission, they transition to State
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other processor, therefore the message is passed on to the

next processor. Otherwise the message is not forwarded and

it is checked for acknowledgements. If the acknowledge is
not found, an error is reported and the system returns to

State 1. If the acknowledge is found, "own" message is
removed from the loop, and the system transitions to State 1

and continues its operation.

2. Four Transputer Loop System

The transputer provides four communication channels

in a system configuration. Its channel availability and the
reliability desire lead us to choose the Two-Loop (ring) or
Single-Loop structure because of simplicity for the imple-
mentation. In spite of the fact that the system can be
affected by loop failure, we will concentrate on the Single

Unidirectional Loop (Figure 5.5) because of its less complex

implementation.

Now let us take a Single Unidirectional Loop with
four transputers as a system, shown in Figure 5.5, and let

us apply the Delay Insertion Loop methodology based on the

Finite State Machine idea.

LLIWS LiIELow,
Figure 5.5 Four Transputer Single-Unidirectional Loop
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Figure 5.4 States of the Delay Insertion Loop

In State 1 (passive state), the processor listens to

inputs from a channel or channels. When no messages come in,
then the listening process waits for a well defined time

period, and if no messages come in during this period, it is

reported as malfunctioning and a new channel is selected. If
something does come in, it is checked to see if the message

is intended for this proce'ssor. If it is, the processor

copies and acknowledges the message and passes it on to the
next processor. If the message is not for this processor, it
is passed without acknowledging and copying.

During the State 1, if a transmission request from
user has been generated then a transition to State 2 will be

made and the output channel will transmit the message and

passes to State 3 immediately after transmission. During the

transmission, if there is an incoming message, it is stored.

In other words, the receiving process continues.

In State 3, a watchdog timer is set and all incoming
messages are checked for originating processor number. If
the number is not the same, it means the message is for some
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switch is returned from Position 3 to 1). This yields a

one-to-one correspondence between stations and circulating

blocks and allows a free choice of the individual block

size. For every new block the entire cycle is repeated as

described. The block may contain data, signaling or supervi-

sory information but normally no transmission occurs during

idle periods, as opposed to circuit switching systems where

channel capacity is reserved even during transmission
pauses. [Ref. 13]

" Suitable monitoring i-s of great importance in such a

decentralized system. Consider the case where an error is

introduced in the address so that neither transmitter nor

receiver will recognize its block. If there is no action

taken, this block will circulate on forever and finally

congest the loop together with other mutilated messages.

Meanwhile the originator cannot leave the loop because there

is no block he is authorized to remove. This problem can be

solved by introducing a monitoring station into the loop at

an arbitrary point. In addition to checking single blocks,

this station also supervises the entire loop operation and

provides clocking and synchronization of the whole system.

This monitoring station is a departure from the idea of

completely distributed control. Certain specialized func-

tions are more economically performed by common equipment

which is at the disposal of all the stations. Examples for

telephony are conference call facilities and abbreviated

dialing. [Ref. 13]

C. IMPLEMENTATION OF DELAY INSERTION LOOP

1. States of Delay Insertion Loop

We can think of the Delay Insertion Loop Interface

as a Finite State Machine with three states corresponding to

the three position switch, Figure 5.4.

lU
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The sequence of events is as follows: When a message is

to be transmitted, the three-position switch(SW), initially

in Position 1, opens (or cuts) the loop for a well-defined

time interval. Since the flow of incoming message blocks

(message stream) cannot be stopped without loss of informa-

tion, the bits arriving during transmission in the RSR have

to be stored. Therefore, the arriving bits in the RSR are

temporarily buffered and forwarded afterwards. Immediately

after a message inserted by the subscriber (node) has left

the TSR, which must be o.f equal length buffer as the RSR,

the switch goes to Position 3 and the output is delayed by

one message length as shown in Figure 5.3. The node has now

entered the loop. It can be called "active" if the switch is

in Position 3, as opposed to "passive", if its switch

remains in Position 1.

- The process of transmitting a block can be initiated

only from the passive state. A second message cannot be

transmitted before the node has become passive, i.e., left

the loop. In other words, for transmitting a second message,

the interface must be switched into a passive state (i.e.,

the node has been disconnected from the loop). This is done

by setting the switch from Position 3 to 1, which takes the

block in the RSR out of circulation (prevents the block in

the RSR from circulating in the loop). The first bit in the

following block and the last bit of the preceding one are

joined together without leaving a gap. It is clear that

switching has to be synchronized in all phases in order to

prevent block damaging. Nevertheless every station (node) is

entirely autonomous, as it freely determines the moment of

transmitting a message (no polling). For leaving the loop,

the station must be authorized to take off a particular

block. The decision rule is very simple if every station

only cancels (removes) its own messages that have circled

the loop (Message X in Figure 5.3 is removed before the
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We have worked using the initial version of OCCAM and

its compiler which was installed into our VAX 11/780 VMS

system. Therefore, we have encountered some difficulties and

problems (such as run-time checking, some unacceptable

constructs and keywords like NOW, PLACEDPAR and PRIPAR in

syntax checking). But new updated versions of the OCCAM may

not have such problems.

C. SUGGESTIONS FOR FOLLOW-ON WORK

This thesis addressed only to the implementation of the

Delay Insertion Loop Interface with a four transputer

single-unidirectional loop system. Possible continuation of

this work may be the implementation with single-

bidirectional, bidirectional two loop or the complete loop

system with sixteen transputers.

In a bidirectional two loop system structure as shown in

Figure 6.1, each transputer is connected to two neighboring

transputers with two channels. The message traffic can flow

in both directions, but circulating traffic in one direction

is less complicated. The system is unaffected by a single

loop failure. As seen in Figure 6.1, the loops can be named

ODD and EVEN. Always one loop is on duty (active) while the

other rests (passive). If a failure occurs 4hile the active

one runs, the spare one (which waits idly) takes over its

job immediately.

In regular array complete loop system as shown in Figure

6.2, there are sixteen transputers (or clusters of

transputers) each one is connected with one link to each

other. There are four vertical and four horizontal loops in

the system. If one of the link fails, the corresponding loop

Uis canceled and removed from the system without serious

effects.
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Figure 6.1 Two-Loop.System with Four Transputers

Figure 6.2 16 Transputer Regular Array Complete Loop

The multicluster shared memory system, shown in Figure

6.3 [Ref. 14,], is also suggested for further implementation

of Delay Insertion Loop methodology.
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APPENDIX A

DELAY INSERTION LOOP INTERFACE

- - "GLOBAL DECLARATIONS
.-9- *-- - - 9 .9 . .9

C1AN screen AT 1
CHAN keyboard AT 2
DEF end.buffer = -3
VAR char.string [BYTE 512]

- - * WRITING ANY CHARACTER STRING TO CRT

PROC write.screen (VALUE string[]) =
SEEQ = [.1 FOR st inRIBYTE 0 ]

screen . strin[ BYTE i
screen ! end.buf er

"- - - * DELAY INSERTION LOOP INTERFACE *

PROC D.I.Loop.Interface ( CHAN in,out VALUE tr.no )
CHAN transmission.request, sender.cnannel
DEF timeout = 4 :
VAR switch.position, code, dest.tr.no, source.tr.no,

pr.no, clock, full, bufferl, buffer2

CODE GENERATOR PROCESS 1
PROC Code. Generator I

code := (dzst.tr.no*10000000) + (source.tr.no*100000)
(pr.no*1000)
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%%:* DECODER PROCESS*

PROC Decoder-
SE~sttr.no code/10000000
source.tr.no (code\1000000)100
pr.no (code\lOOOOO) /160000:

WHILE TRUE - infinite ioop
SE~ull: FALSE -- buffer2 is empty

clock :=NOW - - present time
switch.position 1 -- switch is initially at 1

-- * STATE 1

WHILE switch.position =1 -- State 1
PAR

ALT
in ? code - - incoming message

SEQ
Decoder - - decode the message

dest.tr.no =tr.no -- if message is for us
Sb ufferl :=code -- copy the message
sender.channel !pr.no --send to execute
out ! ANY - - acnowledge signal

TRUE -- if the message is not for us
out ! code - - just pass the message

WAIT NOW AFTER ?hock + timeout - - if time is olt
ATwritescreen (TIME IS OUT.NO INCOMING MESSAGE")

full & SKIP - - if buffer2 is full
out ! buffer2 - -send the message in buffer2

WAIT NOW AFTER ],;ock + timeoWt it time is out
write.screen (TIME IS OUT)

ALT
transmission.request ? ANY -- xmission request?

*switch. ostion :=2 -- yg to State 2
WAIT NOW FTER c~iock + timeout -ittime is out
writescreen (TIME IS OUT.NO XMISSION REQUEST'")
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-- * STATE 2

WHILE switch.position =2 -- State 2
PAR
ALT

in ? code -- incoming message during xmission ?
SEQ - - if there is an incoming message

buffer2 :=code -- store in buffer2
full :=TRUE -- buffer2 is full with message

WAIT NOW AFTER qI ock + timeout - - if time is out
write.screen (TIME IS OUT.NQ INCOMING MESSAGE')

SEode.Generator -- generate message for xmission
out ! code -- transmit the message
switch.position 3 -- then turn back to State 3

- -7STATE 3

WHILE switch.position 3 -- State 3
PAR

ALT
full & SKIP -- if buffer2 is full with message

out ! buffer2 - - send the messafe in buffer2
*-WAIT NOW AFTER c,ock + timeou,: - - itime i u

ATwrite.screen (TIME IS OUT") i u

in ? code - - if there is incoming message
Decoder - - decode the message
IF

source.tr.no =tr.no -- if it is own message
SEQ

code := 0 -- remove the message from loop
switch.position I- -- return to State1

TRUE -- if it is not own message
out ! code - - just pass the message

WAIT NOW AFTER Rlock + timeo t -- if time is out
write.screen( TIME IS OUT")

MAIN PROGRAM*

CHAN linki, link2, link3, link4
PAR

D.I.Loop.Interface (link4, linkl,)
D.I.Loop.Interface (linki, link2, 2)
D.I.Loop.Interface (link2, link3, 3)

JD.I Loop.Interface (link3, link4, 4)

-- * THE END OF THE OCCAM PROGRAM

87



LIST OF REFERENCES

1. Madnick S.E., Donovan J.J. Operating Sytems,
McGraw-Aill,'New York, 10 4.

2. Weitzman, C. Distributed Micro/MiniComputer Systems,
Prentice-Hall, New Jersey, ISu.

3. INMOS Limited, IMS T424 Transputer Reference Manual,
1984.

4. INMOS Limited IMS T424 Transputer Advance
Information, 1984.

5. INMOS Limited, OCCAM Programming Manual, 1983.

6. INMOS Technical Note 5, The Design of Concurrent
Systems, 1984.

7. INMOS Technical Note 10, Floating Point Arithmetic
with the IMS T424, 1985.

8. INMOS Technical Note 6, OCCAM, 1983.

9. "Integrated Circuits", Computer Design, Deoember 1984.

10. Walker Paul, "Multiprocessing-The Transputer", Byte,
May 1985.

11. Baron I. Cavill, P., May, D., Wilson, P., Technical
Article, Electronics, November 1983.

12. INMOS Technical Note 9, Architectural Decisions in the
Design of the IMS T424, i984.

13. Hafner E.R., Nenedal Z.,,, Tschanz, M., "A Digital
Loop Communication System , IEEE Transactions on
Communications, June 1974.

14. Selcuk, Z., Implementation of a Serial Communication
Process for a raut oeran-,- Kea! ime, Multi
rransputer 0p ratl-n System, M.S.-Thesis: Naval
Fostgrauatelchooi, Monterey, 1984.

88



". W. 7

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Department Chairman, Code 52
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

4. Prof. Uno R. Kodres, Code 52 Kr 3
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5100

5. Prof. Roger Marshall, Code 52 Mi
77 .Department of Computer Science

Naval Postgraduate School
Monterey, California 93943-5100

6. Daniel Green, Code 20E
Naval Surface Weapons Center
Dahlgren, Virginia 22449

7. CAPT J. Donegan, USN
PMS 400B5
Naval Sea System Command
Washington, D.C. 20362

8. RCA AEGIS Depository
RCA Corporation
Government Systems Division
Mail Stop 127-327

:-- Moorestown, New Jersey 08057
9. Library (Code E33-05)

Naval urface Weapons Center
Dahlgren, Virginia 22449

10. Dr. M. J. Gralia
Applied Physics Laboratory
John Hopkins Road
Laurel, Maryland 20707

11. Dana Small
Code 8242, NOSC
San Diego, California 92152

12. Genelkurmay Baskanligi
OBID
Bakanliklar, Ankara, Turkey

13. K.K.K ligi
Pl. Pren. Bsk. KOKOBI

.. Yucetepe, Ankara, Turkey

89

* %,%



-Z'. Vr '; 77-T ..- - - 7 1

14. Dz.KK. ii
Personel Daire Bsk.ligi
Bakanliklar, Ankara, Turkey

15. Dz.Har Ok.K.lii 1
Fen Bilimleri B. Bsk.ligi
Heybeliada, Istanbul, Turkey

16. Dz.Harp Ok.K.ligi
Kutuphanesi
Heybeliada, Istanbul, Turkey

17. Istanbul Teknik Universitesi
Kutuphanesi
Istanbul, Turkey

18. Istanbul Universitesi
Kutuphanesi
Beyazit, Istanbul, Turkey

19. Boazici Universitesi 1
Kuuphanesi
Istanbul, Turkey

20. Orta Dogu Teknik Universitesi
KutuphanesiAnkara, Turkey

21. Hacettepe Universitesi
Kutuphanesi
Ankara, Turkey

22. Zafer Selcuk
Haznedar Hurmali sk. Gunes apt. 3/4
Bahcelievler, Istanbul, Turkey

23. Gene Allard
Box 236
Jefferson, South Dakota 57038

24. Bekir Evin 3
Akdurak mh. Kefken cd. 8/3
Kandira, Kocaeli, Turkey

90

-- " .

r -':

%'k 1



FILMED

11-85

DTI
~DTIC

I-

'.\*7 
.. C.. .*"/ . .", ° -', ',-," -,, ; . .- : --.- % :: :-"- -. --. -' : .. ' ' ;. %-.--: ,--: .., : : -- : .: .i .-, *:i .: . , : . -, : ;-~ -i ; 1 .i ;


